Continuous Probability Example


Moment-Generating Function Example

The density function of an exponential distribution is $f_X(x) = \lambda \exp^{-\lambda x}$ (with $lambda \ge 0$).

The formula is $M_X(t) = \int \exp(tx)\ f_X(x)\ dx$.

Calculate The Function

\[ \begin{split} M_X(t) = \int_{0} \exp^{tx} * \lambda * \exp^{-\lambda x}\ dx\\ = \lambda * \int_{0} \exp^{tx} * \exp^{-\lambda x}\ dx \\ = \lambda * \int_{0} \exp^{(t -\lambda) x}\ dx \\ = \lambda * [ \frac{1}{t -\lambda} * \exp^{(t -\lambda) x}]_0^{+\infty} \\ = \lambda * (0 - \frac{1}{t -\lambda}) \\ = - \frac{\lambda}{t -\lambda} \\ = \frac{\lambda}{\lambda - t} \end{split} \]

Calculate The Expected Value

\[ \mathbb{E}(X) = M'_X(0) = \frac{\lambda}{(\lambda - t)^2} = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda} \]

Calculate The Variance

\[ \displaylines{ V(X) = M''_X(0) - \mathbb{E}(X)^2 \\ = \frac{2\lambda}{(\lambda - t)^3} - \frac{1}{\lambda^2} \\ = \frac{2\lambda}{\lambda^3} - \frac{1}{\lambda^2} \\ = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} \\ = \frac{1}{\lambda^2} } \]